

High Density Calcium Silicate Boards & Designs Low Cost | High Insulation | High Strength

High Density Calcium Silicate Boards & Designs

Wedge high density Calcium Silicate Boards are manufactured with Filter Press Technology to achieve very high strength, high temperature insulation, high machinability, and non-wettability to molten metals. These boards and machined ready to use designs are most suitable as thermal insulation for processes in direct contact with molten aluminium such as transfer ladle, casting, holding, metal bath furnace in launders, spouts, floats, hot top ring headers, and holding furnaces for die-casting.

Advantages

- Low thermal conductivity, Low heat capacity Molten aluminium can be transferred with minimal reduction in temperature.
- Used for the lining of the holding furnace, energy savings can be achieved by raising temperature in a shorter time than conventional castable.
- Excellent machinability for variety of shapes such as floats, spouts, hot top ring headers, etc.
- It is non-wettable with molten aluminium, so it is easy to remove solidified metal.

Applications

- Molten aluminium launders.
- Molten aluminium baths for holding furnaces
- Floats, spouts, stopper pins.
- Hot top ring headers, Floats, Spouts, etc.
- Distribution boxes, dams, baffles, filter boxes,
- Troughs, head boxes,
- Working lining in low energy aluminium die cast holding

Quality		W-HD900	W-HD1000	LM-14Z	LM-100	M-M1A			
Colour		White	White	White	White	White			
Classification temperature	°C	1000	1000	1000	1000	1000			
Bulk density	kg/m3	860	1000	840	800	1000			
Open Porosity	%	68	63						
Cold compressive strength	MPa	19	30	1% @2.3	1% @2.7	> 30			
Bending strength	MPa	7	15	8.8	9.3	> 8			
Hardness	Shore D	55	65	64	64				
Shrinkage									
at 750 °C after 12h Linear	%	0.2	0.1	@ 24hr 0.4	@ 24hr 0.4	0.1			
at 750 °C after 12h Thickness	%	0.6	0.6	@ 24hr 1.1	@ 24hr 1.1				
at 1000 °C after 12h Linear	%	0.3	0.15	@ 24hr 0.9	@ 24hr 0.6				
at 1000 °C after 12h Thickness	%	1.1	1.8	@ 24hr 4.6	@ 24hr 2.0				
Thermal conductivity									
200 °C	W/(m K)	0.24	0.25	0.2	0.19	0.25			
400 °C	W/(m K)	0.25	0.26	0.2	0.2	0.26			
000 °C	W/(m K)	0.25	0.28	0.2	0.2	0.27			
800 °C	W/(m K)	0.27	0.29	0.2	0.2	0.27			
Specific heat capacity	kJ/kg K	0.96	0.97			0.97			
Reversible thermal expansion									
(20–750 °C)	K-1 x 10-6	7	4.5			6-7x10-6			
Chemical analysis									
CaO	%	38–52	38–52			38–52			
SiO2	%	45–55	45–55			45–55			
AI2O3	%	1.4	1.4			1.4			
Fe2O3	%	< 1.1	< 1			< 1			
LOI	%	< 5	< 5			< 5			
Standard Sizes									
Length	mm	100 - 3000							
Width	mm	100 - 1500							
Thickness	mm	12.7 - 101.6							

Graphite Reinforced Calcium Silicate Boards

Wedge graphite reinforced boards and designs combines the mechanical and physical properties of graphite and calcium silicate that provides very high load carrying capacity. With these boards and designs you can achieve very low shrinkage, less oil absorption, less out gassing when in metal contact, high non-wetting with molten metal, excellent machinability due to improved toughness and strength. After contact with the aluminium metal almost zero sticking of metal to the surface of boards and design parts. This can also also reduce the transport of oxides into the casted part as well as the overall consumption of metal alloy.

Advantages

- Very low shrinkage
- Less oil absorption
- Less out gassing when in metal contact
- High non-wetting with molten metal
- Excellent machinability

Applications

- Transfer & transport launders, ladles
- Bushings, hot top rings
- transition plates, tips, snouts, filter boxes
- head boxes, headers, floats and spouts

Quality		W-CMA	W-CN17	W-CCG4	WL-101		
Classification temperature	°C	1000	850	1000	1000		
Bulk density	kg/m3	1040	816 - 818	1100 - 1150	800		
Cold compressive strength	MPa	17	16	22 - 24	1% @2.7		
Bending strength	MPa	9.5	8	10 - 11	9.3		
Hardness	Shore D	60		65 - 70	64		
Shrinkage							
at 750 °C after 12h Linear	%	0.1	0.1	0.25 - 0.3	@ 24hr 0.4		
at 750 °C after 12h Thickness	%	0.8	0.6	0.8	@ 24hr 1.1		
Thermal conductivity							
200 °C	W/(mK)	0.2	0.2		0.19		
400 °C	W/(mK)	0.2	0.2	0.64 - 1.2	0.2		
600 °C	W/(m K)	0.21	0.21	0.52 - 0.92	0.2		
2° 008	W/(mK)	0.22	0.22	0.37 - 0.62	0.2		
(20–750 °C)	K-1 x 10-6		7	6.2 - 6.7			
Chemical analysis							
Calcium Silicate	%	82-85		90 - 95			
Graphite	%			4 - 8			
Standard Sizes							
Length	mm	100 - 3000					
Width	mm	100 - 1500					
Thickness	mm	12.7 - 101.6					